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Abstract. Using a comoving representation we reformulate the path integral method for 
the chiral anomaly and  show that the anomalq comes from the accumulating effect in 
argument change of diagonalised matrix elements for non-Hermitian operators.  The 
analysis of the Wess-Zumino consistency condition reveals further that  it is the contribution 
of zero modes which needs to be considered. Thus a new regularisation scheme is proposed 
which leads to a unified expression for the anomaly in 2 n  dimensions both for Abelian 
and  non-Abelian cases. 

1. Introduction 

In recent years investigations of the chiral anomaly has become one of the most 
important problems in particle physics (as well as in other branches of theoretical 
physics). There are several kinds of approach to attack this problem. The path integral 
formulation initiated by Fujikawa (1979, 1980a, b) is highly appreciated due to its 
elegance and  non-perturbative nature. However, some authors have found their results 
depend on the functional measure and regularisation scheme they used (Gomboa 
Saravi et a1 1984, Mckay and Young 1983, Fujikawa 1984). So the Wess-Zumino 
condition has received much attention (Balachandran et al 1982, Andrianov et a /  1982, 
Andrianov and  Bonora 1984, Hu  et a1 1984, Eindorn and Jones 1984). In this paper 
we will propose a new scheme of the path-integral method aiming at getting rid of 
some ambiguities and deriving a unified formula for manipulating both the Abelian 
and non-Abelian chiral anomaly in 2 n  dimensions. 

The organisation of this paper is as follows. In 8 2 a comoving representation 
instead of a functional measure change is explained in some detail before we can 
prove in 0 3 that the unique role played by the zero modes of the Dirac operator is 
either Hermitian or not. It is the argument changes of these zero modes which contribute 
to the chiral anomaly. After a short excursion to the special case of Abelian anomaly 
in § 4, in § 5 we are led to propose a new ‘regularisation’ scheme which picks only 
these contributions. Actually, it is finite and  no divergence problem is involved. Section 
6 contains a summary and  discussion. Some mathematical details are given in  the 
appendices. 

2. The comoving representation 

Consider the action for an N-component Dirac field with both vector and  axial vector 

0305-4470/87/ 175849 + 15S02.50 @ 1987 IOP Publishing Ltd 5849 



5850 Rong-tai Wang and Guang-jiong Ni 

coupling in 2n-dimensional Euclidean space: 

S ( $ ,  $, V, A )  = dZnx $i0+ 

where 

i 0 = iB + iF/ + iAy5 

with 
2 n  

Y, = Y, {Y,, Y Y I  =26," y 5 = i n  n y,=y: 
, = I  

and V, = V i  A", A ,  = AZA " in which the A a are anti-Hermitian generators of the gauge 
group SU( N ) .  Both V2.1 and A2.l are real external gauge potentials. The vector and 
axial vector currents composed of bilinear fermion fields are defined as follows: 

j Z  = i~ "y,+ j:" = i~ "Y,Y~+. (2.3) 

4 + exp(a(x) )+  i-. i exp(-.(x)) (2.4) 

D,j, = a,j, + [ j ,  , V, I + [j:, A,  I = 0. (2.5) 

+-. exp(P(x)y,)  * i+ 3 exp(B(x)y,) (2 .6 )  

D,j: =a,j:+[j:, v,I+[j,, A,]  =o.  (2.7) 

On the classical level, under the infinitesimal field transformation 

with a ( x )  = ~ ' ( \ J A " ,  the invariance condition of action leads to 

Similarly the invariance of S under the infinitesimal chiral transformation 

with P ( x ) = P a ( % ) A a  leads to 

However, on the quantum level, we have to deal with the following generating func- 
tional: 

W (  V, A )  = exp(-r(  V, A ) )  = [ d i  d+]  exp I 
Instead of looking for the Jacobian accompanying the change of integral measure 
under infinitesimal field transformation, we propose a comoving representation 
approach. After one step of infinitesimal transformation of either (2.4) or (2.6), one 
obtains from (2.8) 

with 

W (  V, A ;  a , )  = [d&d+]  exp - d2"x&0(a,)t+b I ( I  
(2.10) 

(2.11) 
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More generally, after s steps, one can write 

ST( V, A ;  a , ,  . . . , a,) 

where 

with 

W( V, A ;  a , ,  . . . , a,) = I [dq  d$] exp( -1 d2"x qiP)(a,, . . . , a,)$) 
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(2.13) 

(2.14) 

(2.15) 

(2.16) 

Notice that i@(a,,  . . . , U,) is a non-Hermitian Dirac operator in general. So in 
order to calculate the ratio (2.13), we introduce two Hermitian operators A(a , ,  . . . , a,) 
and d(a,  , . . . , a,) as follows: 

(2.17) 

(2.18) 
A ( a , , .  . . , a,) = (@) ' (a , , .  . . , a,)iD(al,.  . . , a,) 

&a , ,  . . . , a,) = iD(a,, . . . , a,)(iD)'(u,,. . . , a,) 

with the eigenequations: 

A ( a i , .  . . , ay)4n(x;  ai 9 . .  . , a,) = A;4n(x; a i , .  . . ,  a,) (2.19) 

& I  9 . .  . , a,)&x; a, > * .  * , a,) = G J x ;  a , , .  9 * , ay). (2.20) 

(2.21) 

(2.22) 

It is easy to check the mapping relations 

i O ( a l , .  . . , ay)4,,(x; a , ,  . . . , a,) = A, exp[iO,(a,, . . . , u , ~ l ~ , , ~ ~ ;  a , ,  . . . , a,) 

( iD)+(a l , .  . . , a , ) in (x ;  a , ,  . . . , a,) = A, exp[-iO,(a,, . . . , ~, ) IG, , (x ;  a, ,  . . . , a,) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

,a,-,) (2.27) 
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where a, are either a , ( x )  or p , ( x )  ( i  = 1 , 2 , .  . . , y ) .  We wish to add that while the 
relations (2.17)-(2.22) were familiar in the literature, the arguments e,, were overlooked. 
It is the change in arguments 0, and the accumulating effect of them which occupy 
the central position in the following discussion. Actually, noting that 

d'"x4, (x ;  a , ,  . . . , u, , ) iD(a, , .  . . , u - ) ~ ~ ( x ;  a , ,  . . . , a,,) 

= A, exp[i@,,(a,, . . . , ~ , , ) 1 6 ~ , ,  

I 
and expanding 

$ ( X I  =c  a,4,(x; a , ,  ' .  . , a,,) $ ( X I  = 1 &(x;  a , ,  . . . , a,,)b;, 
n n 

with a, and 6, being anticommuting variables, we can formally write 

W ( V , A ; a ,  , . . . ,  a , ) = d e t i D ( a ,  , . . . ,  ~ , ) = f l ; ~ , e x p [ i 8 , ( a ,  , . . . ,  a , ) ]  

and express the ratio (2.13) as 

I1 

=fl exp[-i60,(a,, . . . , a , - , ,  a<) ] .  
n 

Denoting 

GiD(a , , .  . .  , a,- , ,  a , ) = i 0 ( a I , .  . . ,  a , - , ,  a 5 ) - i D ( a l , .  

and treating it as a perturbation, one finds 

A, exp[iO,(a,, . . . , u5-,)]i&&,(a,. . . . , a,)  

= 5 d'"x$,(x; a , ,  . . . , a~- , ) t3i l3(ul ,  . . . , u y ) 4 , ( x ;  a , ,  . 

For the case of a, = a , ( x )  in (2.15) 

8 i 0 ( a l , .  . . , a y - , ,  c y , )  = [ i 0 ( a I , .  . . , a, ,), - a , ]  
so, with the help of (2.21) and (2.22) the i68, in (2.33) is 

i 6 0 n ( a , , . .  . , a , - , , a , )  =--I d 2 n x 4 n ( x ;  U , , .  . . , u , - , ) aT(x )4 , , (x ;  a , ,  . . . , u T - , )  

d2"x4 , (x ;  a , ,  . . . , U , - ~ ) ~ ~ ( X ) ~ , ~ ( X ;  a , ,  . . . ,  a y - , )  
- &  + I 

For the case of a, = p 7 ( x )  in (2.16) 

s i D ( a , ,  . . . , a,-,, P S I  = - - W ( a , , .  . . , a , - , ) ,  P y y 5 }  

so 

i 6 8 , ( a , , .  . . , a , - , ,  P4)  

. .  

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 
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Some ambiguities may arise from the ratio of zero diagonal elements in (2.31). However 
as discussed in appendix 1,  (2.37) is valid also for zero modes. In fact, the arguments 
of zero modes are the dominant contribution to anomaly. 

Evidently, for the case of as = a , ( x ) ,  we find from (2.31) and (2.35) 

6 U V ,  A; a , ,  . . . , a , - ! ,  a , )  

=; 1 d2"X 4k(x;  a , ,  . . . , a , - , ) a i (x )4 , (x ;  a , ,  . . . , ay- , )  

= T r  a ,  -Tr a,  = O .  (2.38) 

This means that in the V-A scheme, one can always choose such a representation 
without the appearance of a vector anomaly. However instead, for the case of a, = 

P , ( x ) ,  we find 

s u  v, A ;  a , ,  . . . , ay- , ,  P A  

+E d2"x6;(X; ai,. . . , a7-i)Ps(x)y56,(x; a i 1 . .  . ,a , - i )  

(2.39) 

which does not vanish in general. So the axial vector anomaly appears in comoving 
representation as a result of argument change of the Dirac operator induced by chiral 
rotation. 

s 
= Tr Pry5 + Tr P s Y 5  

3. The arguments of zero modes and Wess-Zumino condition 

For the non-Abelian case, P r ( x )  in (2.39) is a * matrix. Noting that (2.23)-(2.26) imply 
that eigenfunctions {4,,(x; a , ,  . . . , ay)}  and {4,,(x; a , ,  . . . , a,)} form a basis of projec- 
tion representation of group SU( N), each one of them acquires a phase under a group 
transformation, e.g. 

eXp(Pp(X)r5)d,(x; a , , .  . , , Q ~ - , )  

= exp[-$i68,(a,,. . . , a , - ! ,  P , ) I h , ( x ;  a , ,  . . . , ay-,  - P y ) .  (3.1) 

Let us prove that C,, 68, is a 1-cocycle over the Lie algebra of the gauge group. Actually, 
for two infinitesimal transformations P ,  and By+, , we have 

~ X P ( P , + ~ Y ~ )  exp(P,y5) = exp(t[p,+ exp[(p<+,  + Pl)r51 
= exp(a,)  exp[(Py+, + P,)Y91 (3.2) 

or 

exp[-(Pl+I +Pc)r51 exp(PS+ly5) exp(P,r5) = exp(+[p5+,, ~ 1 )  = exp(a,)  (3.3) 
neglecting higher-order terms of O(pf). 
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(3.6) 

(3.7) 

(3.10) 

which shows that the Wess-Zumino condition is equivalent to the 1-cocycle of 
anomalous effective action induced by chiral rotation (Faddeev 1984, Zumino 1985, 
Jackiw 1986). Now we make a further observation that A,60n may be regarded as a 
mapping from a closed path composed of three infinitesimal displacements 
( P s ,  p , + , ,  -& in Lie algebra space into the argument change on the complex 
plane of An exp(i0n). For any An # 0, A,68, = 0 is satisfied trivially because the image 
path does not enclose the origin, whereas for Ao,  = 0 ( i  = 0, 1, . . . , n, + n-) the closed 
path is not topologically trivial; it encloses the origin so A,60,>, = *27r, where '*' sign 
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depends on the chirality of the zero mode of i0 or (i0) ' .  Thus the non-trivial constraint 
imposed by the consistency condition (3.10) is really 

Afis+,Sr(al , .  . . , as- l ,  A )  = -i (3 .11 )  

Further argument is given in appendix 2. Correspondingly, we assert that for calculating 
the so-called consistency anomaly it is only meaningful to preserve the contribution 
of zero modes in (2.39): 

(3.12) 

n,+n- 
A , , + , ~ @ o ,  = 0 mod 2 r i  x integer 

1 - 1  

W Y A ;  a , ,  . . . , ~ , - , , ~ , ) = T ~ P , Y , . ~ + T ~ P , Y , ~  
where 

n,+n_ 

t9= C $ol(x; a, ,  . . . , a s - l ) d , ( x ;  a, ,  . . . , as-l)  (3.13) 
I = 1  

or 

(3.13') 

and n, or 5, are the number of zero modes of iB(a, ,  . . . , 
with 'k' chirality respectively. 

or ( i0)+(a1 ,  . . . , as-l) 

4. The Abelian anomaly 

If we discuss the Abelian anomaly case, i.e. A = 0, V # 0 in 0 2, and p ( x )  = iq(x) t  with 
~ ( x )  a real finite c-number function and t being a continuous parameter running from 
0- 1 .  Then from (2.31) and (2.39) we define 

(4.1) sr( v, T(x) ,  t )  = -i 2 sen 
n 

where 

s o n =  en( t+d t ) - en ( f )= -  dznxv(X)[&;(X, t)Y56n(X, t)+$;(x, ~ ) Y S ~ ~ ( X ,  t ) ]  dt  

(4.2) 
with 

where 

(4.3) 

(4.4) 

i0' = exp(-iv(x)ty5)i0 exp(-iv(x)ty,) = iD- ys t , i f~(x) .  (4.5) 
According to the discussion in 8 3 ,  we introduce 

(4.6) 

or 

(4.7) 
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as the projection operator of null space of i B '  or ( i J3 ' ) -  and n ,  or n', being the number 
of zero modes with f chirality respectively. Then one can express (4.1) as 

6r( V, ~ ( x ) ,  t )  = i d  t d'"x q(x)(G(x, t ) +  &(x, t ) )  (4.8) 

where 

G(x, t )  = t r (y48(x .  t ) )  (4.9) 

(4.10) 

is just the so-called local index density of non-Hermitian operator (io') or (io') 
respectively. 

Actually, in the Abelian case, A = 0, iD'-' is Hermitian, so G ( x ,  t i  = 6 ( x ,  t ) ,  and 
it is independent of t .  Thus one can perform the trivial integration with respect to r 
and obtain 

Returning to (2.12), one obtains 

(4.11) 

(4.12) 

Taking the derivative with respect to ~ ( x )  and put q ( x )  + O ,  one arrives at the famous 
ABJ anomaly formula: 

(8,J:i = (8,($y,yc$)i = -2 iG(x)  (4.13) 

where ( ) denotes the quantum average. 

5. A new regularisation formula 

We are now in a position to calculate the anomalous effective action induced by chiral 
transformation shown in (3.12). Since only the zero modes are involved, actually no 
divergence problem occurs. So the following regulatisation scheme can be proposed. 

(5.1) 

(5.2) 

Tr P Y 5  6 = {Tr P Y 5 f (  [ >  iE))}E i n d e p e n d e n r  

Tr PY46 = {Tr PY5f([, ( ia ) - )>E i n d e p e n d e n t  

where 

is a substitution for the projection operator of zero modes with the contour C on a 
complex z plane being selected so that i t  bypasses the origin and e-@/(z--iJ3) is 
bounded on C, as shown in figure 1. 
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Figure 1. 

The implication of the &independent prescription in (5.1) is obviously that it picks 
only the zero modes of i D  while neglecting all the non-zero ones. In the following 
our task is to pick the residue at z = 0 which is € independent. We denote explicitly 

i D = i @ ( a l ,  a 2 , .  . . , a , - l ) = i y , ( d w +  V,+AA,ys) 

(iD)' = iyw(Jw + V,, - A , Y ~ )  

(5.4) 

( 5 . 5 )  

by omitting all the redundant subscripts. Remember Vi = - V,, A i  = -Aw, so 

we rewrite 

( z - i a ) - ' =  (z+(iD).)(z+(iB)-)- ' (z- iD)- '  
= ( z  + (iD)-)[z'- ~ i z A y ,  - (iB)(iD)-]- '  

in the momentum representation 

(z - iD)-' = ( z  - K + , f ) ( z 2  - k 2  - y + 2 k L ) - '  

where 

,Y= ik - iX + iAy, 

Q = XI! + 2izAys 

Q = PX+ 2izAy, 

Furthermore, an expansion 
with the derivative symbol d only acting on A or V. 

(5.7) 

(5.10) 

is used without worrying about its convergence property. This is because we confine 
ourselves in keeping &-independent terms and  taking the trace at the final stage, so 
only finite terms in (5.10) survive. 

After a long and careful calculation (changing -iz + z )  we arrive at a neat formula 

6 independent 

1 1  
- E ( m + l , n + l )  

( 4 7 ~ ) "  n !  m = O  

(5.11) 

= m + n  
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in which ( Q +  -Q-,  0 + -Q+ by deleting irrelevant terms) 

Q* = F“’ U,. * FIP,’neuy5 + ~ ~ A ’ Y s  (5.12) 

F ( v )  ,U = a,v”-avv,+[v,, V”l+CA,,AUI (5.13) 

F ~ ~ . . ’ = ~ , A , - a . A , + [ A , ,  V , , ] + [ V , , A , ]  (5.14) 

with ~ , ~ = : [ y , ,  y y ]  and B ( m + I , n + l ) = T ( m + l ) T ( n + l ) / T ( m + n + 2 )  is the usual 
beta function. The symbol [ 1/(2m)!]d2“/dz2” 1 z = o  implies that only the_ coefficients 
of zZm terms in Q$Q? need to be read out. It is easy to obtain Tr @ y 5 6  in (5.2) by 
changing the sign of A ,  (see ( 5 . 5 ) ) ,  which corresponds to Q+ + Q- in (5.1 1). Therefore, 
we have the final result of (3.12) 

1 1 “  
S T ( V , A ; p ) = - , -  2 B ( m + l , n + l )  

( 4 7 ~ )  n!“=o 

x Tr[ p ( x ) y 5  - ( 1 2 (Q!kQ5 + Q!!Q>) 
(2m)! dzZm / , + I 2  

(5.15) 
= m + n  

All the above calculations are performed in 2n-dimensional Euclidean space. For 
the four-dimensional case ( n  = 2, m = 0, 1, 2), it is quite easy to check that 

( V i  ( V )  1 ST( V,  A ;  p )  = -7 Tr{@(x)e,Upo[F,U F,, + ~ F I A , ’ F ~ i + ~ A , A u A , A ,  
(47T) 

-t(Fl‘/y’A,A, + A,FLF’A, + A,A,Fb:’)]}. (5.16) 

It is just the well known non-Abelian chiral anomaly deduced by Bardeen (1969), 
Alvarez-GaumC and Ginsparg (1984), Bardeen and Zumino (1984) and Gipson (1986). 

For deriving the Abelian anomaly, we simply set A,  = 0, p ( x )  = i q ( x ) t  (see § 4), 
the ABJ anomaly term can be read off from (5.1 1) with m = 0 only: 

G ( x ) = G ( x ) = y ~  t r ( % , u l . ~  P,,hF,lUl~ . ‘ FP,,U,,) 
- 1 ( - i )”  

(5.17) 
(47T) n .  

where 

F,” = a, V” - d ”  v, + [ v, , V,,] .  (5.18) 

6. Summary and discussion 

The ingredients of our treatment for anomaly by path integral approach are composed 
of four linking parts. 

(i) By introducing the comoving representation, one is able to calculate the success- 
ive ratio product of determinants for a finite chiral transformation instead of calculating 
the change in functional measure for an infinitesimal transformation. 

( i i )  The Dirac operator accompanying the chiral transformation is non-Hermitian 
in general, but it can be diagonalised in comoving representation with a matrix element 
being a complex number. It is the argument of this diagonalised element that plays 
a central role in the anomaly. 

( i i i )  We try to explore the implication of the Wess-Zumino consistency condition 
by a topological argument that it is only the contributions of zero modes of the Dirac 
operator that need to be considered in evaluation of the anomaly. 
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(iv) Correspondly, a new regularisation scheme is proposed which only picks the 
contribution of zero modes and leads to a unified formula as shown in (5.15). Though 
it is rather tedious to derive, it is easy to use. 

Some discussion is in order. 
(a) There is no worry about the non-Hermitian property of the Dirac operator: it 

can be treated in a similar way as that of a Hermitian one. In particular the final 
formula (5.15) shows no serious difference in these two cases. 

(b) There is no ambiguity in the choice of functional measure or regularisation 
scheme now. Our regularisation is finite and unique in the sense of only picking the 
contribution of zero modes. Actually, it seems to us that the Wess-Zumino condition 
prevailing in the literature ensures correctly counting the zero modes while suppressing 
the non-zero ones. Moreover, in our point of view, the well known regularisation 
scheme proposed by Fujikawa for Abelian anomaly with Hermitian ( i0) :  

~ ( x )  = M - x  lim ( c n 4t,(x)y5 e x p [ - ( i 0 ~ / ~ 2 1 d . ( x ) )  (6.1) 

is essentially the following: 

(6.2) 
~ ( x )  = (L 4t,(x)y5 e x p [ - ( i ~ ~ / ~ ’ ~ m , ( x ) )  M independent 

which stresses the selection of zero modes in similar style as that in this paper. 
(c) Last, but not least, we prefer to use the symbol of equality ‘=’ rather than 

transformation ‘+’ thoughout the formulation. It is advantageous to obtain the anomaly 
formula (4.13) with the symbol ( ) , to treat some special problems such as the Schwinger 
model or (Abelian or non-Abelian) bosonisation in two dimensions (see appendix 3), 
or to derive the Wess-Zumino term in the general case. The latter problem will be 
discussed in a separate paper where the relation between the path integral method and 
a differential geometry approach to the anomaly will be further clarified. 
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Appendix 1. How to avoid the 010 ambiguity in calculation 

As pointed out after (2.37), the zero diagonal elements of iD will cause difficulty in 
the calculation. To avoid this, we introduce a small chiral symmetry breaking term 
from the very beginning, i.e. redefine iDF = iD+  & y 5 .  Then, for example, in the case 
of the Abelian anomaly, we have iD: = exp(-ip(x)tr,)iD, exp[-ip(x)tr5] and denote 

4 : ( ~ ) ) }  and { I  C $ ; ( E ) ) }  as the complete set of eigenvectors of A: = (i0:)’(iJ3:) and 
A: = (iD:)(i0;)’ respectively. Corresponding to (2.21) and (2.22), one obtains 

(Al . l )  

(Al.2) 

(A1.3) 
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where 

A ? , ( & )  = AS, + E ' .  (A1.4) 

Now, even the original zero diagonal elements of iD' become E exp(iO,(r, E ) )  or 
- E  exp(iO,(r, E ) )  in the iD: representation. Everything is well defined. Then at the 
final stage, let E + O  and all formulae in the text remain valid. 

Appendix 2. The index as a winding number 

As discussed in § 3, the Wess-Zumino condition implies that a continuous transforma- 
tion along a closed path in the group manifold will map into a closed path on the 
complex plane for each diagonal element of the Dirac operator. Depending on this 
property, we manage to introduce a winding number which bears a direct relationship 
to the index of this Dirac operator. 

Denoting the operator after s steps as 

iDT = i D ( u l , .  . . , a , )  = i ( B + X  + y5X,) (A2.1) 

and looking at a finite chiral transformation eUY5 starting from this point and going 
back to it, we have 

exp( v (  cp)y5) = exp( v@+ - v@-)  = e'@+ + CL@- = g@- + g-'@_ (A2.2) 

with 
A 

P,='(l  2 2c Ys) (A2.3) 

and a parameter yo chosen so that g(cp = 0) = g(cp = 2 ~ )  = I, e'' = g(cp, x) E G, and 

dv = g- '  d,g -dv = g d,g-' (A2.4) 

-d v y5 = -d U @+ + d U @- = g d,g-' @+ + g - ' d,g @- . (A2.5) 

Denoting 

(A2.6) 

(A2.7) 

(A2.8) 

(A2.9) 

( A2.10) 

(A2.11) 

( A2.12) 

(A2.13) 
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as shown in (2.25) and  (2.26). Also, as in (2.371, one can calculate the argument 
change S O , ,  when cp -+ cp + d p  as 

(A2.14) 

Substituting -dvy5 from (A2.5) and (A2.10), (A2.11) into (A2.14), one obtains 

( A2.15) 

where 4\:i = P,&,, etc, and the relation (A2.4) have been used. 
Now we see that the integration with respect to cp can be performed in (A2.15): 

( A2.16) 

so 

(A2.17) 

If n > 0, when there is a 4::', there must be a 4:;' according to the mapping relation, 
so only the contributions of n = 0 modes survive. In these cases, 4:;) and 6::) should 
be understood as the zero modes of iJ3:*' = iD,$( 1 * y 5 )  and (iJ35)L'*) = (iJ3r)T$( 1 * y 5 )  
respectively. 

Hence we have the change of effective action during the rotation of 4 : O-. 2 7 ~ :  

UT = -iAO,,, = + 2 ~ i (  n+ - n- + f i+ - f i - )  

= 2ni[ind(iD,) + i nd ( i J3 , ) j  (A2.18) 

where 

ind(iJ3,) = n+ - n- ind(iJ3,)' = f i+ - f i -  (A2.19) 

is the index of operator iD5 or  (iJ3,) '  defined as the difference of the numbers of zero 
modes with opposite chirality. Thus we see that the index of iJ3, or (iDS)' could be 
identified to a winding number which characterises the mapping of the closed path in 
a group manifold into the complex plane for diagonal elements of the Dirac operator. 
Only the contribution of the argument for zero modes is non-trivial. This topological 
explanation allows one to interpret the meaning of the Wess-Zumino condition as a 
constraint of picking only the contributions of zero modes in calculating the anomaly. 

Appendix 3. The Schwinger model 

The Schwinger model is defined as the Q E D  in (1  + 1)-dimensional space. Let us also 
turn to Euclidean space: 

9 = $iD+ (A3.1) 
where 

iJ3 = i(,d - ie& (A3.2) 
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with y1 = CT,, yz = (TZ, y5 = iy, y2 = -v3. Notice that now we have an important relation: 

Y,Y5 = iE,”Y” (A3.3) 

so that it is possible to decouple the fermion field from the gauge field by chiral 
transformation in the generating functional. Actually, according to (4.5), 

iD‘=exp(-iv(x)ty,)iD exp(-iq(x)ty,) = i (d- ie&+ t d v ( x ) y s .  (A3.4) 

If v ( x )  satisfies the following decoupling condition by using (A3.3): 

ey,A, = i & , , ~ ~ d , v ( ~ )  (A3.5) 

then 

iD‘ = id+ e(1- r)A, 

At t = l ,  

@ ‘ = I  - - id. 

(A3.6) 

(A3.7) 

Notice, however, (A3.5) implies ~ ( x )  being imaginary. For using the formula 
(5.17), we put V, in (5.18) as 

V,(t) = -ie( 1 - t)A, 

then (5.17) gives 

(A3.8) 

-e 
4T G(x, ~ ) = G ( x ,  t)=-(l-t)&,,(d,A,-dJi,). (A3.9) 

Substituting it into (4.11), one obtains 

AT= 2i lo’ d t  J d2x v(x)G(x,  t )  

(A3.10) 
- 

so (4.12) implies a vector boson with mass e / J r  emerges: 

= [ e x p ( - g  J d’xA,A,)][J [ d q d + ] e x p ( - j d 2 x $ i d 4 ) ]  (A3.11) 

which was first derived by Roskies and Schaponsnik (1981) by the path integral method. 
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